韩伟课题组在β淀粉样蛋白聚集早期多聚体的生成机制研究上取得重要进展
2022.02.12韩伟课题组运用多尺度计算模拟方法,对β淀粉样蛋白(Aβ)聚集过程进行了大尺度模拟,深入研究了早期阶段产生的Aβ多聚体的拓扑结构和形成机理,在分子层次上揭示了Aβ致病与非致病亚型之间在早期自组装过程的差异,为理解Aβ多聚体毒性产生机制提供了重...

韩伟课题组运用多尺度计算模拟方法,对β淀粉样蛋白(Aβ)聚集过程进行了大尺度模拟,深入研究了早期阶段产生的Aβ多聚体的拓扑结构和形成机理,在分子层次上揭示了Aβ致病与非致病亚型之间在早期自组装过程的差异,为理解Aβ多聚体毒性产生机制提供了重...

近日,城市规划与设计学院博士后何张源、岳峰获得2021年中国博士后科学基金第70批面上项目二等资助。余玲、何张源获得2022年度广东省自然科学基金资助。

近日,信息工程学院(以下简称:信息学院)张敏副教授课题组和化学生物学与生物技术学院(以下简称:化生学院)李子刚教授/尹丰研究员课题组合作在生物传感器领域国际知名期刊Biosensors and Bioelectronics上发表题为“Tetrahedral DNA nanostructure bas...

深入理解与分析电池(包括锂离子、钠离子、空气电池等)运行过程中的体相和界面行为对于电池性能的持续改进具有重要意义。

大数据和人工智能与化学基因和材料基因的融合正推动生物医学和新材料的前沿科学发展。近年来,机器学习,尤其是深度学习,已经成为基于数据驱动的分子尺度发现化学基因和材料基因强大方法。2019年冠状病毒病(COVID-19)爆发一年后还没有特异性的有效药物...

机器学习在各领域的广泛应用促生其在材料领域的应用,它提供了一种新型的工具,即能从高维数据中发现数据间的规律,有助于减少计算量从而加速对新材料的探索。特征提取(特征工程)是机器学习的关键组成部分,选择合适的形式来表达将直接影响最终模型的效...

锂电池作为新一代绿色储能器件已经改变了我们的生活,正极材料仍然是电池储存容量、循环寿命以及成本的瓶颈,通常具有高工作电压以及超高的可逆比容量,是开发下一代高能量密度锂离子正极材料的研究重点之一。富锂锰基层状过渡金属氧化物(aLi2MnO3.bNMC)已...

锂电池作为新一代绿色储能器件已经改变了我们的生活,使我们用上了手机等移动通信和电动车等绿色出行。目前正在使用锂电池正极材料可分为3类,高端手机等用的钴酸锂、电动车电池用的有层状高容量但安全性不高的镍钴锰三元氧化物和高安全但容量不高的磷酸铁...
信息工程学院杨玉超教授团队在神经形态计算领域取得重要突破——基于氧化钒忆阻器...
倪晋仁课题组:噬菌体介导的全球地下水抗性基因动态
环境与能源学院倪晋仁课题组于《Science Bulletin》发文,解读如何从基因组入手实...
科学智能学院莫凡洋课题组在《Acc. Chem. Res.》系统阐述自动化与AI辅助色谱分离研...
城市规划与设计学院助理教授宫兆亚课题组在PNAS发文揭示:大语言模型在不同语言中...
环境与能源学院周鹏助理教授获批国家重点研发计划“催化科学”重点专项青年科学家项目
环境与能源学院余珂团队在Water Research报道了菌藻颗粒处理高氨氮渗滤液的新进展
郑家麒助理教授合作论文在JAE发表,探讨股权薪酬与股份回购的时机选择